Low-voltage and fast-response polymer- stabilized hyper-twisted nematic liquid crystal
نویسندگان
چکیده
We report a low-voltage and submillisecond-response polymerstabilized hyper-twisted-nematic (HTN) liquid crystal cell with a large dielectric anisotropy host mixture. To correct the measured voltagedependent transmittance, we have to take the voltage shielding effect of the alignment layers into consideration. Both Kerr effect and flexoelectro-optic effect contribute to the observed induced birefringence. To evaluate the dynamic responses of these two effects, we fit the decay time data with a double relaxation model. A good agreement between the experiment and simulation is obtained. Such a HTN cell still exhibits fast response time (<2ms) even at low temperature (0°C). Potential applications for display and photonic devices are foreseeable. ©2015 Optical Society of America OCIS codes: (160.3710) Liquid crystals; (230.3720) Liquid-crystal devices. References and links 1. M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys. 48(3), 03B001 (2009). 2. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015). 3. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007). 4. D. Xu, L. Rao, C. D. Tu, and S. T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9(2), 67–70 (2013). 5. J. W. Kim, T. H. Choi, and T. H. Yoon, “Fast switching of nematic liquid crystals over a wide temperature range using a vertical bias electric field,” Appl. Opt. 53(26), 5856–5859 (2014). 6. D. J. Channin, “Triode optical gate New liquid-crystal electro-optic device,” Appl. Phys. Lett. 26(11), 603–605 (1975). 7. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002). 8. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987). 9. L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011). 10. M. Wittek, N. Tanaka, D. Wilkes, M. Bremer, D. Pauluth, J. Canisius, A. Yeh, R. Yan, K. Skjonnemand, and M. Klasen-Memmer, “4.4: New materials for polymer-stabilized blue phase,” SID Int. Symp. Digest Tech. Papers 43(1), 25–28 (2012). 11. Y. Haseba, S.-i. Yamamoto, K. Sago, A. Takata, and H. Tobata, “22.1: Invited Paper: Low-voltage polymerstabilized blue-phase liquid crystals,” SID Int. Symp. Digest Tech. Papers 44(1), 254–257 (2013). 12. Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymerstabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013). 13. L. Rao, H. C. Cheng, and S. T. Wu, “Low voltage blue-phase LCDs with double-penetrating fringe fields,” J. Disp. Technol. 6(8), 287–289 (2010). 14. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009). 15. F. Peng, Y. Chen, J. Yuan, H. Chen, S. T. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C. 2(18), 3597– 3601 (2014). #237997 $15.00 USD Received 13 Apr 2015; revised 5 May 2015; accepted 6 May 2015; published 11 May 2015 (C) 2015 OSA 1 Jun 2015 | Vol. 5, No. 6 | DOI:10.1364/OME.5.001339 | OPTICAL MATERIALS EXPRESS 1339 16. B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006). 17. D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, W. S. Kim, S. S. Choi, H. J. Park, I. J. Chung, and H. J. Coles, “Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices,” Appl. Phys. Lett. 98(26), 263508 (2011). 18. A. Lorenz, D. J. Gardiner, S. M. Morris, F. Castles, M. M. Qasim, S. S. Choi, W. S. Kim, H. J. Coles, and T. D. Wilkinson, “Electrical addressing of polymer stabilized hyper-twisted chiral nematic liquid crystals with interdigitated electrodes: Experiment and model,” Appl. Phys. Lett. 104(7), 071102 (2014). 19. H. Coles, S. Morris, F. Castles, D. Gardiner, and Q. Malik, “40.1: Invited Paper: Ultrafast high optical contrast flexoelectric displays for video frame rates,” SID Int. Symp. Digest Tech. Papers 43(1), 544–547 (2012). 20. F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009). 21. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008). 22. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymerstabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010). 23. T. Ishitani, Y. Niikura, M. Ikenaga, M. Kobayashi, M. Kato, T. Nagi, Y. Oe, M. Nakano, S. Seo, Y. Hirakata, J. Koyama, S. Yamazaki, R. Sato, K. Okazaki, and M. Katayama, “4.2: Polymer-stabilized blue-phase material driven at low voltage,” SID Int. Symp. Digest Tech. Papers 43(1), 18–21 (2012). 24. H. Lee, H.-J. Park, O.-J. Kwon, S. J. Yun, J. H. Park, S. Hong, and S.-T. Shin, “11.1: Invited Paper: The world's first blue phase liquid crystal display,” SID Int. Symp. Digest Tech. Papers 42(1), 121–124 (2011). 25. C. Y. Tsai, C. Y. Tsai, F. C. Yu, Y. F. Lan, P. J. Huang, S. Y. Lin, Y. T. Chen, T. I. Tsao, C. T. Hsieh, B. S. Tseng, C. W. Kuo, C. H. Lin, C. C. Kuo, C. H. Chen, H. Y. Hsieh, C. T. Chuang, and N. Sugiura, “A novel blue phase liquid crystal display applying wall-electrode and high driving voltage circuit,” SID Int. Symp. Dig. Tech. Pap. #37.1 (2015). 26. D. Xu, Y. Chen, Y. Liu, and S. T. Wu, “Refraction effect in an in-plane-switching blue phase liquid crystal cell,” Opt. Express 21(21), 24721–24735 (2013). 27. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 116(3–4), 197–206 (1985). 28. H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, “The effect of the molecular structure on flexoelectric coupling in the chiral nematic phase,” J. Mater. Chem. 11(11), 2709–2716 (2001). 29. H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006). 30. C. Noot, M. J. Coles, B. Musgrave, S. P. Perkins, and H. J. Coles, “The flexoelectric behaviour of a hypertwisted chiral nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 725–733 (2001). 31. M. Schadt and F. Muller, “Physical-properties of new liquid-crystal mixtures and electrooptical performance in twisted nematic displays,” IEEE Electron. Dev. 25(9), 1125–1137 (1978). 32. S. T. Wu, A. M. Lackner, and U. Efron, “Optimal operation temperature of liquid crystal modulators,” Appl. Opt. 26(16), 3441–3445 (1987). 33. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
منابع مشابه
Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal.
A variable optical attenuator (VOA) based on polymer stabilized twisted nematic (PSTN) liquid crystal (LC) is demonstrated. Comparing with the normal twisted nematic LC-based VOA, PSTN exhibits a much faster response time. Moreover, the polymer networks effectively eliminate the backflow effect which exists in the normal TNLC cell. The attenuation mechanism of the PSTN LC was studied. Both pola...
متن کاملFast-Response Liquid Crystal Microlens
Electrically tunable liquid crystal microlenses have attracted strong research attention due to their advantages of tunable focusing, voltage actuation, low power consumption, simple fabrication, compact structure, and good stability. They are expected to be essential optical devices with widespread applications. However, the slow response time of nematic liquid crystal (LC) microlenses has bee...
متن کاملFast-response liquid crystal lens for 3D displays
Three-dimensional (3D) display has become an increasingly important technology trend for information display applications. Dozens of different 3D display solutions have been proposed. The autostereoscopic 3D display based on lenticular microlens array is a promising approach, and fast-switching microlens array enables this system to display both 3D and conventional 2D images. Here we report two...
متن کاملFast Flexoelectric Switching in Bimesogen-doped Polymer Stabilized Uniform Lying Helix and Vertical Standing Helix of Cholesteric Liquid Crystals
We report flexoelectric liquid crystal displays based on polymer-stabilized cholesteric liquid crystals with both uniform lying helix (PSULH) and vertical standing helix (PSVSH) modes. A method to enhance the flexoelectric switching of the CLC mixture is achieved by mixing nematic liquid crystal (NLC) constituents with the addition of a giant flexoelastic coefficient bimesogenic LC dimer into a...
متن کاملFast-Switching Stratified Polymer-Stabilized Liquid Crystal for Flexible Display Applications
A new liquid-crystal device for flexible display applications was developed using twofold polymerization process. The cell was fabricated from a homogeneous mixture of a liquid crystal and a polymerforming material. Caused by the spatially nonuniform rate of polymerization and wetting properties, largescale anisotropic phase separation of the liquid-crystal blend and the polymer precursor leads...
متن کامل